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Chemometrics and spectral frequency selection

By Puirir J. BRownN!, CLirroRD H. SPIEGELMA N?
AND MicuAEL C. DENHAM!

! Department of Statistics and Computational Mathematics, University of Liverpool,
PO Box 147, Liwverpool L69 3BX, UK.
2 Department of Statistics, Texas A & M, College Station, Texas 77843, US.A.

In many fields of science, the simple straight line has received more attention as a
basis for calibration than any other form. This is because measuring devices have
been mainly univariate and have had calibration curves which were sufficiently
linear. As scientific fields become more computationally intensive they rely on more
computer-driven multivariate measurement devices. The number of responses may
be large. For example modern scanning infrared (IR) spectroscopes measure the
absorptions or reflectances at a sequence of around one thousand frequencies.
Training data may consist of the order of 10 to 100 carefully designed samples for
which the true composition is either known by formulation or accurately determined
by wet chemistry. In future one wishes to predict the true composition from the
spectrum. In this paper we develop a variable selection approach which is both
simple in concept and computationally easy to implement. Its motivation is the
minimization of the width of a confidence interval. The technique for data reduction
is illustrated on a mid-1r spectroscopic analysis of a liquid detergent in which the
calibrating data consists of 12 observations of absorptions at 1168 frequency
channels (responses) corresponding to five chemical ingredients.
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1. Introduction
1.1. Spectroscopic data

Infrared spectroscopy involves directing a pulse of infrared (1r) light onto a
substance, typically but not exclusively a liquid, noting the energizing effect over a
short interval of time, and converting this to absorbances at various frequencies.
Modern scanning instruments allow the simultaneous examination of a frequency
range of around 1000 contiguous frequencies. The absorbances plotted at these
frequencies represent the spectrum for that liquid sample. The 12 mid-1r spectra
samples plotted over 1168 distinct frequencies are presented in figure 1. The samples
are different mixtures of four detergent ingredients in aqueous solution. Each
mixture involves a different amount of each of the five constituents. These plots
appear continuous up to the resolution of the plotting device but are in reality 1168
discrete points. The 12 plots appear very similar at first sight. These data make up
our calibrating data used to fit and analyse the models of this paper.

Figure 2 gives the sample mean and variance of the mid-1r spectra for the
calibration data, averaging over the 12 observations. The 12 curves are broadly of a
similar form to the mean curve, but there is also considerable variation, usually at
those frequencies where absorbances are high. In fact we shall see that very accurate
predictions of concentrations of ingredients may be obtained from these curves.
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Figure 1. Absorbance spectra for the 12 detergent samples.
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Figure 2. Mean and variance of 12 absorbance spectra.
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The relationship of spectrum to ingredients may be motivated as follows. Briefly,
molecules of a substance are able to absorb the incident Ir radiation by moving
between different vibrational and rotational energy levels of the lowest electronic
energy state. In the very simple case of a diatomic A-~B molecule the only vibration
that can occur is a periodic stretching along the A-B bond. These stretching motions
allow the vibrational frequency to be approximately predicted from Hooke’s law. It
is possible to consider the vibrations of individual bonds in more complex molecules
in a similar manner, but other forms of vibration of individual bonds become

Phal. Trans. R. Soc. Lond. A (1991)


http://rsta.royalsocietypublishing.org/

e

R
\
\\ \\
P

/

\
{

A

P\

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
£\

SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org
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possible, including rocking, scissoring, twisting and wagging (see, for example, Cross
& Jones 1969). Spectroscopists have verified that specific absorption bands for
particular bonds or groups within a molecule occur at, or near, the expected
frequencies. All these vibrational mode absorption frequencies tend to be altered in
varying degrees by small changes in the remainder of the molecule, leading to highly
characteristic IR spectra for organic substances.

The 1r absorption of a particular mixture will be related to what chemicals are
present and in what amounts. In fact in many circumstances the relationship has
been found to be linear. This relationship is characterized by Beer’s law (Cross &
Jones 1969), which stipulates a linear relationship between the concentration of a
substance dispersed in a non-absorbing medium and the amount of light absorbed by
it. This is only an experimental law and departures from linearity occur for a variety
of reasons, including lack of dispersion throughout the medium and scattering effects
in the case of particulate solids.

Although the spectroscopist can identify bands of frequencies which give high
absorbances for particular ingredients it is much harder to specify a priori those
frequencies which best discriminate between the ingredients. Modern methods of
chemometric analysis usually avoid such selection or apply some automated method.
It is the purpose of this paper to explore a new method of frequency selection which
is both easy to apply and demonstrated to be effective. This method is also able to
cope with the high degree of indeterminacy in typical spectroscopic data where there
are many more variables than observations.

1.2. Regression models and overfitting

There are two modes of approaching the fitting of a relationship between the
spectrum (Y, 1168 x 1) and the detergent and water concentrations (x, 5 x 1). Suppose
we regress Y on z. To predict « in future we may invert the fitted relationship, taking
account of covariance structure. Or, more directly, we may regress x on Y so as to be
able to predict « from Y in future. The latter is often favoured for its simplicity in
the chemometrics literature. However, when Y is the response and embodies the
error, statisticians have long advocated regressing in the direction of the error (see
Eisenhart 1939; Williams 1969; Brown 1982). When there are fewer observations
(12) than spectral variables (1168) then both approaches lead to the same
indeterminate fit, with the same non-unique solution subspace (see Sundberg &
Brown 1989). However, despite the conforming degeneracy, the focus of our
approach is largely that of regression of spectra on concentrations, as we regard this
as conceptually most satisfactory when the concentration data are designed in
calibration as in the present example.

In such an indeterminate, over-parametrized problem there are a variety of ways
to regularize and achieve stable estimates: partial least squares regression (see
Martens & Naes 1989 ; Brown 1990) ; principal components regression ; ridge regression
(Marquardt 1979); coherent calibration (Brown & Maikeldinen 1992); minimum
length least squares (using the Moore—Penrose generalized inverse); and continuum
regression (Stone & Brooks 1990). None of these methods is unique. They depend
critically on the scales of the variables used to predict. All assume implicitly, or
explicitly in the case of Brown & Mékeldinen (1992), some sort of prior assumptions
for the true regression coefficients, and will fare more or less well depending on
whether or not such implicit assumptions approximately hold, which can be
influenced by the choice of transformation. Brown & Mékeldinen (1992) and Denham
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& Brown (1990) utilize the fact that absorbance is a continuous function of
frequency, the former assuming a stationary gaussian process prior distribution, the
latter using splines and autoregressive error structures.

Although it is appealing to recognize that inferentially one can in principle always
do better by using more information, since one is then always free to ignore the
information, in scientific research there is a tradition which emphasizes the fragility
of inference with large numbers of variables and the inevitable associated degree of
overfitting. KEven in the closed bayesian inferential system, tractable prior
distributions for large numbers of parameters have unforeseen and undesirable
features (see Dawid 1988; Makeldinen & Brown 1988). On the other hand, in the
sampling framework of statistical inference, a set of complementary problems arise.
A large number of estimates of effects which are truly zero will throw up at random
a proportion of large estimates of seemingly large effects; the problem of multiple
comparison. Regularization or shrinkage offers one answer, but may still be open to
some overfitting. Internal leave-one-out cross-validation, a valuable tool against
self-deception (see Stone 1974), may flatter in its internal cross-validated mean
squared errors, especially as it assumes future prediction data that is very like that
sampled. In a further application of the technique of this paper, using a validation
set whose range is outside that of the calibrating data to predict the concentrations
of three sugars in solution, the cross-validation mean squared errors were found to
be an order of magnitude too small (Brown 1991).

In the approach we adopt here we remove a large number of frequencies so as to
reduce vulnerability to overfitting. This is achieved by choosing frequencies to
minimize the length of a confidence interval. Before specifying our method in §4 we
review approaches to variable selection in the next section. The model adopted is
presented in §3 and the application described in §5. The reader wishing to skip the
technical details of §4 may skip to the end of that section for a brief summary of the
method before proceeding to the example.

2. Variable selection reviewed

The large number of responses and the relative paucity of observations in modern
calibration make many of the standard variable selection techniques used in
regression inapplicable or computationally prohibitive. Commonly used methods of
variable selection are all possible regressions, best subset selection, backward
elimination, forward selection and stepwise regression. For details of these
approaches the reader is referred to Miller (1990). Clearly, since backward elimination
relies on including all variables in the regression model and then eliminating
variables, it cannot be used due to the non-uniqueness of the regression equation
based on including all ¢ variables. The use of the all possible regressions approach is
also infeasible. Even if we restrict attention to those subsets which give unique
estimators, the number of models which must be considered is vast. Best subset
regression, which requires a fraction of the time required by all possible regressions,
will still consider too many regressions for it to be practicable in many cases.

The use of forward selection methods is widespread (Fearn 1983), and some
instruments have such an approach incorporated in their accompanying software
(see Osborne et al. 1984). Fearn (1983) gives an example of calibrating protein
content in ground wheat where forward selection is found wanting, partly because of
high correlations between absorbances at different frequencies and low correlation

Phil. Trans. R. Soc. Lond. A (1991)
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with the component to be predicted. The use of stepwise regression also suffers in a
similar way when applied to this example.

Selection techniques geared to prediction of the controlled variable via the fitted
regression of Y on x have the same computational drawbacks. Brown (1982) uses a
test of ‘additional information’ to select a subset of variables, and Spezzaferri (1985)
uses a bayesian information theoretic approach.

Sometimes authors use a variable selection technique after taking principal
components. This does not, however, meet our aim of selecting frequencies since all
of the original set of frequency channels are still retained.

So far in this section we have assumed that we are concerned with predicting only
one component. With p > 1 components one may consider the separate predictions
and take the union of the frequencies selected for each prediction. Looking for a
frequency set which simultaneously discriminates among the p components may be
preferable if the aim is to choose the smallest subset. It would require a weighted sum
of residual mean squares as an overall measure of goodness. Such an approach would
add considerably to the complexity and entail a heavy computational overhead.

In this paper we propose an extremely simple technique for response selection. It
does not claim to give the smallest possible subset but it does provide a predictively
good subset which substantially reduces the number of channels.

3. The model for selection

As discussed we adopt the approach of regression of the absorption spectra on
composition. We also regress on only one ingredient at a time. Although it might
superficially seem desirable to regress on all five ingredients simultaneously, or at
least on four of them since they total 100 %, we want subsequently to predict the
concentration of each of the four detergent chemicals using just the spectrum
without knowledge of concentrations of the other three chemicals in the sample, see
Brown (1982) for further discussion.

For the moment assume the simpler linear regression models,

Yy = o+ B2+ ey (1)

where j=1,...,q indexes the ¢ = 1168 frequencies, and k= 1,...,n the n =12
observations. Here z, is the concentration of one of the ingredients, for the kth
sample. In this model, errors {¢,,} have zero mean and variance o} and are assumed
to be uncorrelated. The error variance at frequency j, oj, incorporates both
measurement, error and residual effects due to omitted constituents of the sample.
The uncorrelatedness of the errors is perhaps an over-simplification since correlation
is induced by these omitted constituents. In this case one could entertain the
possibility of correlation of ¥}, across channels within an observation, but with the
not insubstantial additional problem of a very large unknown covariance matrix ; see
Denham & Brown (1990) for some possible ways of structuring such problems. If
such correlations are substantial it will be important to use them explicitly for
prediction or to use them implicitly by a regularized method, such as partial least
squares, that regresses x on Y.

As already discussed, the formulation is in terms of controlled calibration, where
the explanatory variables are of future interest in prediction. Controlled calibration
is most appropriate when these explanatory variables are initially fixed in some
designed calibration experiment, as in the present example.

Phil. Trans. R. Soc. Lond. A (1991)
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The n observations {Y,;, x;;5 = 1,...,q; k = 1, ..., n} serve to estimate the unknown
parameters, a;, f;, 0']? in model (1). With these ¢q estimated calibrated relationships we
may predict any further unknown sample compositions §,,¢ = 1, ..., 7', where we have
designated unknown z by &. For this prediction problem the analogous model to (1)
is

Zy; = O‘ﬂ‘ﬂj gt+€tj’ (2)
where ¢,; are uncorrelated errors with variance oij=1,...,q;t=1,....T).

We use the single-component method to tackle the multicomponent situation as in
our illustration in §5 by successively applying the single composition results
marginally to the p components and amalgamating the p sets of selected wavelengths.
That is, we look to discriminate in turn between each ingredient and the other
ingredients taken together.

One approach to choice of model dimension is to choose the size of model by
calculating the mean squared error of prediction. This mean squared error is the sum
of a variance and a bias squared term. Larger models have increased variance but
decreased bias and an optimum compromise between the two is possible. A related
but different approach which we adopt focuses on prediction intervals. The fitted
model from (1) is not the true model. It is estimated once but may be used repeatedly
to predict future values of &, each prediction incorporating the same bias of fitting.
In addition to this source of error from the calibrating experiment there is the error
generated by the postcalibration or prediction experiment. These two sources of
error are affected by the size of model or number, ¢, of frequency channels adopted
and determine the width of the confidence interval. We do not here look at the
simultaneous satisfaction of all future use prediction intervals with an ascribed
probability, rather we focus marginally on each single use interval. Again we are able
to achieve an optimal compromise which minimizes the width of interval and gives
a unique choice of selected channels.

When ¢ is large, the numerous systematic errors will give rise to a proportion which
is excessively large and spawns a related large literature of methods which seek to
shrink estimates towards zero.

Quite distinct but equally problematic considerations arise within a bayesian
framework. Suppose §,, ..., £, are viewed as exchangeable a priori, that is, having a
joint distribution which is invariant to permutations of the indices and consequently
not in general independent; then Z,, ..., Z, provide information on the form of this
exchangeability, and posterior inference about &, will depend on Z,, ..., Z, | as well
as Z, and the training data. Additionally, the multiple use of the calibration with its
prior necessitates a careful assessment of the stability of inference to alterations of
this prior distribution (see Berry 1988).

For the selection of frequency channels in this paper we work within the sampling
theory inferential framework. Our basic idea is to choose that subset of ¢’ of the ¢
channels such that the approximated length of each single use prediction interval is
minimized. Both ¢" and the corresponding subset of frequencies are chosen by the
method.

4. The selection method

Since x and £ are scalars, we seek a linear combination of the response to each
instrument. We can then use the well-developed univariate methodology. Henceforth
in the prediction model (2) we refer to the tth future Z and drop the subscript ¢ to it.
Let Z = (Z,,...,7Z,)T and Z, = 3 0,7;. Similarly let a; = £ 0,a; and g, = 26,8, We

Phil. Trans. R. Soc. Lond. A (1991)
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look for values of 0 = (0, ...,0,)", with typically ¢" < g non-zero components, which
minimize the approximate length of certain confidence intervals. In models (1), (2)
in addition to the second-order error assumptions the errors are taken to be normally
distributed. Readers wishing to skip the following technical derivation may proceed
to the last paragraph of this section.

For prescribed 6, the compound response Z, is normally distributed with, as mean,
the calibration line, *E(Z) = ay+ f,€, and variance X 6% o3. We proceed by means of
the Cauchy—Schwarz inequality. First, with prescribed confidence level 1—vy and

fixed @ with ¢” specific non-zero components,
1Zy— 2 05(c;+ B;E)l = 120, 056f| < v/ [Z67 071V [x1-,(0)] (3)

since ef are now independent standard normal. Secondly and similarly, with
probability 1—4,

IS 0,6+ B, 8) = 0,0+ B, £)] < VIS 02 02 2(E)]V [X2_o(q)]. (4)

where s*(§) = [1/n+{(§—%)*/Z (x, —)?}] and ¢ is the number of prescribed non-zero
0;. These statements will also be true for 6 chosen by the calibrating data in model
(1) provided the randomness induced does not effect the actual channels selected. We
give sufficient conditions for this later.

Let B be the event represented by (3) and A the event represented by (4). Then

P(B|4) = P(4,B)/P(4)

= [P(A)+P(B)—PA U B)|/P(4) 2 1+[(1—y)—1]/(1=y)

=1=7/(1=9)

=1—v.
Thus, for ‘good’ calibrating events prescribed by (4) which occur with probability
(1—14), we have future predictions prescribed by (3) with probability approximately
(1 —7), the approximation being better the smaller the value of y and §. Inequality
(4) may be adapted to give a statement for all future £, and the y* degrees of freedom
increase to 2¢’. With inequality (3) this would form a basis for simultaneous
repeated-use confidence intervals (see also Scheffé 1973; Carroll, et al. 1988). We,
however, prefer the single-use statements.

We let ¢; = v/[x}_,(¢")] and ¢, = v/[Xxi_s(¢")]. Now, the triangle inequality gives
|Zy—E(Zy)| < |Zy—E(Z,)| +|E(Zy) — E(Z,)|, which enables us to combine (3) and (4)
into a single inequality for the divergence of Z, from its fitted value for given §&.
Solving this for £ would give the single-use confidence region. More simply, thinking
of a graph of Z against £ for a limited region of § values, we may approximate the
width of the confidence interval by ‘height’ divided by ‘slope’, essentially a local
linear Taylor series expansion (see, for example, Carroll & Spiegelman 1986).

The approximate half-width is thus

e oo

This is the quantity we will minimize with respect to the ¢’ channels with non-zero
0.

When o} have to be estimated from the data they are replaced by the usual
unbiased estimators ¢7, but for this paper we have made no attempt to adjust the
probability statements appropriately.

~ ()

4 "
%0,
1
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The non-zero #; which minimize (5) may be easily seen to be proportional to éj,

where
. AN
- (2)/(525) ©
gj 10;
7=1,...,¢', and for notational convenience we have assumed that the selected

frequencies are the first ¢" out of ¢. Our estimator of £ obtained from the linear
compound of the Z;, j = 1,...,¢, obtained from (6) is

£ =Z;—dy (7)
since /)’6 ) ﬂ]

Lommdentally, (6) are the generalized least squares estimators conventionally
used in multivariate controlled calibration, and represent a special unicomponent
case of equation (2.16) of Brown (1982) with diagonal covariance structure. The
minimized half-length of interval (5), substituted by (6), is

o +eosi@)] [ 54 ®)

With ¢, and ¢, functions of ¢’ and linked by s(£) in the numerator of (8), our choice
of ¢/, and that subset of ¢’ of the ¢ channels, depends on the unknown £. However,
if we choose equal probability levels y = 4, so that ¢, = ¢, = ¢, then minimization of
(8) over ¢’ becomes independent of §. Moreover, whether or not the levels are chosen
equal, (8) is easily minimized by ordering the absolute values of the standardized
slope coefficients f8;/0; and choosing the largest ¢ of these, and then taking that ¢’
for which (8) is a minimum.

If we do not want the conditional interpretation for single-use curves characterized
by two probability levels y and §, then inequalities (3) and (4) are replaced by

\Zy— S 0,6+ ,6)| = [0,0,¢} < V[ 02 02(L+s2E)V X2, ()]s

where 1 —7 is the single confidence level. Taking the same linearizing approximation
to this gives a narrower interval but the same form of half-width and the same
selection, provided # =y = 4.

Sufficient conditions for their to be little variation in the channels selected are as
follows.

L. The variances of all the estimated regression slope coefficients {ﬂ]} are small.

2. The slopes {/f]} belong to one of two non-empty sets. The first has absolute value
far from zero, |#,] > 0. The second group has slopes approximately equal to zero. For
all slopes f3; and f3;, in the first group it is assumed that the distances [|2;|—|f,| are
large.

It is evident that the number of components selected is a monotonic decreasing
function of the both y and 4, so that if they are both chosen large enough only one
component is selected. Typical values y = 8 = 0.1 allow enough information to be
retained in our detergent example.

In summary, our method orders the absolute values of /3] /o, with &; estimating o
when as usual the error standard deviation is unknown. It chooses the frequenmes
corresponding to the largest ¢" of these, where ¢’ minimizes (8), and here ¢? and ¢?
are tabulated y® percentage points on ¢’ degrees of freedom. Dependence on s(£)
disappears if the two confidence levels are equal.

Phil. Trans. R. Soc. Lond. A (1991)
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Figure 3 Figure 4
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Figure 3. Component 1 multiple regression coefficients with selected frequency bands.

Figure 4. Component 1 confidence interval half-width by number of chosen frequencies. Minimum
occurs at 11.

5. The detergent example

This data-set consists of absorptions at ¢ = 1168 mid-1R, equally spaced frequencies
(channels) in the range 3100 to 750 cm™". This detergent is a solution in water of four
chemicals, with water making up the fifth component of the mixture. Only » = 12
carefully designed samples were available with the five percentages of ingredients
recorded for each of these. The data are further described and analysed in Denham
& Brown (1990), using the continuity of absorbance as a function of frequency. Since
the calibration design was quite strictly controlled, we adopt a controlled calibration
mode of analysis throughout, regressing absorptions on ingredients and then
‘inverting ’ this relationship to predict a future composition from the absorptions for
the sample. However, we have here concentrated on a single x-variable, whereas the
data have five. We adopt the following approach to this. First, treating the data as
five completely separate data-sets, we select sets of frequencies for each of these data-
sets. We then are able either to continue to treat the five datasets as quite separate
and predict each component from the inverted simple linear regressions, using (7); or
to adopt a hybrid multiparameter approach involving (a) pooling the five sets of
chosen frequency channels and (b) ‘inverting’ the X ¢' = ¢ multiple regressions
of absorption on components to predict each component in future from a set of
absorptions. This inversion would itself be a weighted multiple regression of the
Q-vector Z, on vectors of regression coefficients with, as design matrix, the @ x5
matrix of regression coefficients and ¢ different variances from the earlier multiple
regression of Z,, on components. The estimator is thus provided by (2.16) of Brown
(1982), namely, ) B R ~

£ = (BS'BY)'BS HZ,—a),
with the S the full error covariance matrix of that paper replaced by a diagonal ¢ x ¢
covariance matrix.

For component 1, figure 3, gives the bands of frequency channels selected for
chosen probability levels y = & = 0.1. The positions of the chosen frequencies are
indicated by vertical lines, and are superimposed on the graph of slope coefficients for
this component from multiple regression of absorbances on components. For this
component there are 11 selected channels, in order {998, 999, 997, 996, 1000, 995,

Phil. Trans. R. Soc. Lond. A (1991)
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Table 1. Root mean squared prediction error
component
method 1 2 3 4 5
simple Ls 3.44 0.95 1.77 0.36 1.38
multiple Ls 0.39 0.47 0.40 0.11 0.30
select simple Ls 1.53 0.43 0.81 0.39 0.94
select multiple Ls 0.14 0.21 0.15 0.11 0.23

54, 1001, 994, 53, 55}, making up two quite separate groups of frequencies, {53, 54,
55} and {994-1000}. Figure 4 is proportional to the half-width (8) as a function of ¢’
for component one, depicting the minimum at ¢ = 11 and a sharp increase as ¢’
increases, with the value at the minimum being around one tenth of that with all
1168 frequencies included. Figure 4 is typical of plots of (8) for the other components,
and these have consequently been omitted, as have the other component plots
paralleling figure 3. The number of frequencies selected for components two to five
are 9, 3,7, 17, and all the selected channels are quite distinct, so that the pooled set
of frequencies for the hybrid multiparameter prediction involves @ = 47 selected
channels.

Table 1 gives leave-one-out root mean squared prediction errors for the five
components corresponding to four different methods. The tabulated results are thus
cross-validated so that the selection of wavelengths is based on 11 observations and
the 12th is predicted for every subset of size 11. Two of the methods incorporate all
1168 wavelengths and two involve selection of wavelengths as indicated above. The
two methods are further dichotomized by whether they are uni- or multicomponent.
As a consequence of the diagonal covariance structure, there is a substantial
reduction of prediction error in using multicomponent methods, and within either
uni- or multicomponent the selection procedures of this paper are beneficial for most
components. The variance of the four detergent ingredient percentages were 16.4, 5.5,
4.9, 2.9, respectively, so that predictions are generally very accurate with very high
percentages of variation explained. As a further reference point, partial least squares
on all frequencies with four latent factors gave root mean square prediction errors of
0.20,0.29,0.15,0.11, 0.18 for the four components and water. Although these are only
marginally less good than our preferred last row of table 1, further work on the
calibration of sugars in Brown (1991) shows partial least squares on all frequencies
to lack robustness with respect to different prediction sets. After selection of
frequencies by developments of the method of this paper, such non-robustness
disappears.

Note that we have used mean squared error as a prediction criterion. For simple
linear regression the mean squared error is infinite. However, the use of mean
squared error is justified for ¢ > 3, since it is finite if and only if the number ¢ of
frequencies is at least three (see Brown & Spiegelman 1991). This paper provides for
the selection process and sharpens the results of Lieftinck-Koeijers (1988).

6. Commentary

We have provided a new method of channel frequency selection. The method is
strictly applicable to unicomponent calibration, but we have demonstrated by
example that a hybrid multicomponent method is also effective. This hybrid version
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coped with the multicomponents through ¢;. If at a particular frequency other
components also influenced the response, this would inflate the corresponding o,
reducing the standardized coefficient. It relies on discriminating between each
component and the rest in turn. One can, however, envisage situations where the
selection of frequencies should be based on a completely multicomponent method.
This would be the case if for example particular frequencies were very good at
discriminating between a pair of components on the one hand against the rest, but
offered little discrimination between the pair, whose resolution could be achieved
from other channels.

It is easy to see qualitatively how one might consider components simultaneously,
and at the same time incorporate a correlation structure across frequencies. Some
straightforward calculations following from Brown & Sundberg (1987) give the
asymptotic, observed, second-derivatives, p X p matrix of the profile log-likelihood of
£ at the maximum likelihood estimate, that is, the information matrix for the vector
of component £s, as BI'BT. Here B is a p X ¢ matrix of coefficients from the full
version of model (1) formed by regressing the ¢ absorptions on the p = 4 components.
It is of interest to note that, when p = 1 and the ¢ x ¢ covariance matrix I"is diagonal,
then our criterion just amounts to accumulating the ¢’ highest information
components. Thus the ordering based on f7/0? is quite natural. The use of
information in itself does not give one a stopping rule which adequately takes
account of the dimensionality of estimation.

It probably requires more experience with other data-sets to see whether or not the
confidence levels y and J, can be prespecified and yet retain sufficient information.
In the application of the methodology to the calibration of three sugars (Brown
1991), y =6 = 0.001 was chosen by cross-validation. That report also contains a
simple modification to deal with an autoregressive error structure.

We are grateful for comments by Dr Rolf Sundberg on an earlier version, which led to an improved
presentation. P.J.B. and M.C.D. are grateful to the SERC for providing a grant under the
Complex Stochastic Systems Initiative. Shell UK also provided funding for work on selection in
calibration with many variables. C. H.S. was funded by the US National Science Foundation and
the Shell Development company.
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